
The probability density function of a continuous random variable Y (or the
probability mass function if Y is discrete) is referred to simply as a proba-
bility distribution and denoted by

f(y;θ)

where θ represents the parameters of the distribution.
We use dot (·) subscripts for summation and bars (−) for means, thus

y =
1
N

N∑
i=1

yi =
1
N
y · .

The expected value and variance of a random variable Y are denoted by
E(Y ) and var(Y ) respectively. Suppose random variables Y1, ..., YN are inde-
pendent with E(Yi) = µi and var(Yi) = σ2

i for i = 1, ..., n. Let the random
variable W be a linear combination of the Yi’s

W = a1Y1 + a2Y2 + ...+ anYn, (1.1)

where the ai’s are constants. Then the expected value of W is

E(W ) = a1µ1 + a2µ2 + ...+ anµn (1.2)

and its variance is

var(W ) = a2
1σ

2
1 + a2

2σ
2
2 + ...+ a2

nσ
2
n. (1.3)

1.4 Distributions related to the Normal distribution

The sampling distributions of many of the estimators and test statistics used
in this book depend on the Normal distribution. They do so either directly be-
cause they are derived from Normally distributed random variables, or asymp-
totically, via the Central Limit Theorem for large samples. In this section we
give definitions and notation for these distributions and summarize the re-
lationships between them. The exercises at the end of the chapter provide
practice in using these results which are employed extensively in subsequent
chapters.

1.4.1 Normal distributions

1. If the random variable Y has the Normal distribution with mean µ and
variance σ2, its probability density function is

f(y;µ, σ2) =
1√

2πσ2
exp

[
−1

2

(
y − µ
σ2

)2
]
.

We denote this by Y ∼ N(µ, σ2).
2. The Normal distribution with µ = 0 and σ2 = 1, Y ∼ N(0, 1), is called the

standard Normal distribution.
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3. Let Y1, ..., Yn denote Normally distributed random variables with Yi ∼
N(µi, σ2

i ) for i = 1, ..., n and let the covariance of Yi and Yj be denoted by

cov(Yi, Yj) = ρijσiσj ,

where ρij is the correlation coefficient for Yi and Yj . Then the joint distri-
bution of the Yi’s is the multivariate Normal distribution with mean
vector µ = [µ1, ..., µn]

T and variance-covariance matrix V with diagonal
elements σ2

i and non-diagonal elements ρijσiσj for i �= j. We write this as
y ∼ N(µ,V), where y = [Y1, ..., Yn]

T .
4. Suppose the random variables Y1, ..., Yn are independent and Normally dis-

tributed with the distributions Yi ∼ N(µi, σ2
i ) for i = 1, ..., n. If

W = a1Y1 + a2Y2 + ...+ anYn,

where the ai’s are constants. Then W is also Normally distributed, so that

W =
n∑
i=1

aiYi ∼ N
(
n∑
i=1

aiµi,

n∑
i=1

a2
iσ

2
i

)
by equations (1.2) and (1.3).

1.4.2 Chi-squared distribution

1. The central chi-squared distribution with n degrees of freedom is de-
fined as the sum of squares of n independent random variables Z1, ..., Zn
each with the standard Normal distribution. It is denoted by

X2 =
n∑
i=1

Z2
i ∼ χ2(n).

In matrix notation, if z = [Z1, ..., Zn]
T then zT z =

∑n
i=1 Z

2
i so that X2 =

zTz ∼ χ2(n).
2. If X2 has the distribution χ2(n), then its expected value is E(X2) = n and

its variance is var(X2) = 2n.
3. If Y1, ..., Yn are independent Normally distributed random variables each

with the distribution Yi ∼ N(µi, σ2
i ) then

X2 =
n∑
i=1

(
Yi − µi
σi

)2

∼ χ2(n) (1.4)

because each of the variables Zi = (Yi − µi) /σi has the standard Normal
distribution N(0, 1).

4. Let Z1, ..., Zn be independent random variables each with the distribution
N(0, 1) and let Yi = Zi + µi, where at least one of the µi’s is non-zero.
Then the distribution of∑

Y 2
i =

∑
(Zi + µi)

2 =
∑

Z2
i + 2

∑
Ziµi +

∑
µ2
i
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has larger mean n + λ and larger variance 2n + 4λ than χ2(n) where λ =∑
µ2
i . This is called the non-central chi-squared distribution with n

degrees of freedom and non-centrality parameter λ. It is denoted by
χ2(n, λ).

5. Suppose that the Yi’s are not necessarily independent and the vector y =
[Y1, . . . , Yn]

T has the multivariate normal distribution y ∼ N(µ,V) where
the variance-covariance matrix V is non-singular and its inverse is V−1.
Then

X2 = (y − µ)TV−1(y − µ) ∼ χ2(n). (1.5)

6. More generally if y ∼ N(µ,V) then the random variable yTV−1y has the
non-central chi-squared distribution χ2(n, λ) where λ = µTV−1µ.

7. If X2
1 , . . . , X

2
m are m independent random variables with the chi-squared

distributions X2
i ∼ χ2(ni, λi), which may or may not be central, then their

sum also has a chi-squared distribution with
∑
ni degrees of freedom and

non-centrality parameter
∑
λi, i.e.,

m∑
i=1

X2
i ∼ χ2

(
m∑
i=1

ni,

m∑
i=1

λi

)
.

This is called the reproductive property of the chi-squared distribution.
8. Let y ∼ N(µ,V), where y has n elements but the Yi’s are not independent

so that V is singular with rank k < n and the inverse of V is not uniquely
defined. Let V−denote a generalized inverse of V. Then the random vari-
able yTV−y has the non-central chi-squared distribution with k degrees of
freedom and non-centrality parameter λ = µTV−µ.

For further details about properties of the chi-squared distribution see Rao
(1973, Chapter 3).

1.4.3 t-distribution

The t-distribution with n degrees of freedom is defined as the ratio of two
independent random variables. The numerator has the standard Normal dis-
tribution and the denominator is the square root of a central chi-squared
random variable divided by its degrees of freedom; that is,

T =
Z

(X2/n)1/2
(1.6)

where Z ∼ N(0, 1), X2 ∼ χ2(n) and Z and X2 are independent. This is
denoted by T ∼ t(n).

1.4.4 F-distribution

1. The central F-distribution with n and m degrees of freedom is defined
as the ratio of two independent central chi-squared random variables each
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divided by its degrees of freedom,

F =
X2

1

n
/
X2

2

m
(1.7)

where X2
1 ∼ χ2(n), X2

2 ∼ χ2(m) and X2
1 and X2

2 are independent. This is
denoted by F ∼ F (n,m).

2. The relationship between the t-distribution and the F-distribution can be
derived by squaring the terms in equation (1.6) and using definition (1.7)
to obtain

T 2 =
Z2

1
/
X2

n
∼ F (1, n), (1.8)

that is, the square of a random variable with the t-distribution, t(n), has
the F-distribution, F (1, n).

3. The non-central F-distribution is defined as the ratio of two indepen-
dent random variables, each divided by its degrees of freedom, where the
numerator has a non-central chi-squared distribution and the denominator
has a central chi-squared distribution, i.e.,

F =
X2

1

n
/
X2

2

m

where X2
1 ∼ χ2(n, λ) with λ = µTV−1µ, X2

2 ∼ χ2(m) and X2
1 and X2

2 are
independent. The mean of a non-central F-distribution is larger than the
mean of central F-distribution with the same degrees of freedom.

1.5 Quadratic forms

1. A quadratic form is a polynomial expression in which each term has
degree 2. Thus y2

1 + y2
2 and 2y2

1 + y2
2 + 3y1y2 are quadratic forms in y1 and

y2 but y2
1 + y2

2 + 2y1 or y2
1 + 3y2

2 + 2 are not.
2. Let A be a symmetric matrix

a11 a12 · · · a1n

a21 a22 · · · a2n

...
. . .

...
an1 an2 · · · ann


where aij = aji, then the expression yTAy =

∑
i

∑
j aijyiyj is a quadratic

form in the yi’s. The expression (y − µ)TV−1(y − µ) is a quadratic form
in the terms (yi − µi) but not in the yi’s.

3. The quadratic form yTAy and the matrix A are said to be positive defi-
nite if yTAy > 0 whenever the elements of y are not all zero. A necessary
and sufficient condition for positive definiteness is that all the determinants

|A1| = a11, |A2| =
∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ , |A3| =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ , ..., and
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|An| = det A are all positive.

4. The rank of the matrix A is also called the degrees of freedom of the
quadratic form Q = yTAy.

5. Suppose Y1, ..., Yn are independent random variables each with the Normal
distribution N(0, σ2). Let Q =

∑n
i=1 Y

2
i and let Q1, ..., Qk be quadratic

forms in the Yi’s such that

Q = Q1 + ...+Qk

where Qi has mi degrees of freedom (i = 1, . . . , k). Then
Q1, ..., Qk are independent random variables and
Q1/σ

2 ∼ χ2(m1), Q2/σ
2 ∼ χ2(m2), · · · and Qk/σ2 ∼ χ2(mk),

if and only if,

m1 +m2 + ...+mk = n.

This is Cochran’s theorem; for a proof see, for example, Hogg and Craig
(1995). A similar result holds for non-central distributions; see Chapter 3
of Rao (1973).

6. A consequence of Cochran’s theorem is that the difference of two indepen-
dent random variables,X2

1 ∼ χ2(m) andX2
2 ∼ χ2(k), also has a chi-squared

distribution

X2 = X2
1 −X2

2 ∼ χ2(m− k)

provided that X2 ≥ 0 and m > k.

1.6 Estimation

1.6.1 Maximum likelihood estimation

Let y = [Y1, ..., Yn]
T denote a random vector and let the joint probability

density function of the Yi ’s be

f(y;θ)

which depends on the vector of parameters θ = [θ1, ..., θp]
T
.

The likelihood function L(θ;y) is algebraically the same as the joint
probability density function f(y;θ) but the change in notation reflects a shift
of emphasis from the random variables y, with θ fixed, to the parameters θ
with y fixed. Since L is defined in terms of the random vector y, it is itself a
random variable. Let Ω denote the set of all possible values of the parameter
vector θ; Ω is called the parameter space. The maximum likelihood
estimator of θ is the value θ̂ which maximizes the likelihood function, that
is

L(θ̂;y) ≥ L(θ;y) for all θ in Ω.

Equivalently, θ̂ is the value which maximizes the log-likelihood function
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l(θ;y) = logL(θ;y), since the logarithmic function is monotonic. Thus

l(θ̂;y) ≥ l(θ;y) for all θ in Ω.

Often it is easier to work with the log-likelihood function than with the like-
lihood function itself.

Usually the estimator θ̂ is obtained by differentiating the log-likelihood
function with respect to each element θj of θ and solving the simultaneous
equations

∂l(θ;y)
∂θj

= 0 for j = 1, ..., p. (1.9)

It is necessary to check that the solutions do correspond to maxima of
l(θ;y) by verifying that the matrix of second derivatives

∂2l(θ;y)
∂θj∂θk

evaluated at θ = θ̂ is negative definite. For example, if θ has only one element
θ this means it is necessary to check that[

∂2l(θ, y)
∂θ2

]
θ=θ̂

< 0.

It is also necessary to check if there are any values of θ at the edges of the
parameter space Ω that give local maxima of l(θ;y). When all local maxima
have been identified, the value of θ̂ corresponding to the largest one is the
maximum likelihood estimator. (For most of the models considered in this
book there is only one maximum and it corresponds to the solution of the
equations ∂l/∂θj = 0, j = 1, ..., p.)

An important property of maximum likelihood estimators is that if g(θ)
is any function of the parameters θ, then the maximum likelihood estimator
of g(θ) is g(θ̂). This follows from the definition of θ̂. It is sometimes called
the invariance property of maximum likelihood estimators. A consequence
is that we can work with a function of the parameters that is convenient
for maximum likelihood estimation and then use the invariance property to
obtain maximum likelihood estimates for the required parameters.

In principle, it is not necessary to be able to find the derivatives of the
likelihood or log-likelihood functions or to solve equation (1.9) if θ̂ can be
found numerically. In practice, numerical approximations are very important
for generalized linear models.

Other properties of maximum likelihood estimators include consistency, suf-
ficiency, asymptotic efficiency and asymptotic normality. These are discussed
in books such as Cox and Hinkley (1974) or Kalbfleisch (1985, Chapters 1 and
2).
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1.6.2 Example: Poisson distribution

Let Y1, ..., Yn be independent random variables each with the Poisson distri-
bution

f(yi; θ) =
θyie−θ

yi!
, yi = 0, 1, 2, ...

with the same parameter θ. Their joint distribution is

f(y1, . . . , yn; θ) =
n∏
i=1

f(yi; θ) =
θy1e−θ

y1!
× θy2e−θ

y2!
× · · · × θyne−θ

yn!

=
θΣ yi e−nθ

y1!y2!...yn!
.

This is also the likelihood function L(θ; y1, ..., yn). It is easier to use the log-
likelihood function

l(θ; y1, ..., yn) = logL(θ; y1, ..., yn) = (
∑

yi) log θ − nθ −
∑

(log yi!).

To find the maximum likelihood estimate θ̂, use

dl

dθ
=

1
θ

∑
yi − n.

Equate this to zero to obtain the solution

θ̂ =
∑

yi/n = y.

Since d2l/dθ2 = −
∑
yi/θ

2 < 0, l has its maximum value when θ = θ̂, con-
firming that y is the maximum likelihood estimate.

1.6.3 Least Squares Estimation

Let Y1, ..., Yn be independent random variables with expected values µ1, ..., µn
respectively. Suppose that the µi’s are functions of the parameter vector that
we want to estimate, β = [β1, ..., βp]

T
, p < n. Thus

E(Yi) = µi(β).

The simplest form of the method of least squares consists of finding the
estimator β̂ that minimizes the sum of squares of the differences between Yi’s
and their expected values

S =
∑

[Yi − µi (β)]2 .

Usually β̂ is obtained by differentiating S with respect to each element βj
of β and solving the simultaneous equations

∂S

∂βj
= 0, j = 1, ..., p.

Of course it is necessary to check that the solutions correspond to minima
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(i.e., the matrix of second derivatives is positive definite) and to identify the
global minimum from among these solutions and any local minima at the
boundary of the parameter space.

Now suppose that the Yi’s have variances σ2
i that are not all equal. Then it

may be desirable to minimize the weighted sum of squared differences

S =
∑

wi [Yi − µi (β)]2

where the weights are wi = (σ2
i )

−1. In this way, the observations which are
less reliable (that is, the Yi ’s with the larger variances) will have less influence
on the estimates.

More generally, let y = [Y1, ..., Yn]T denote a random vector with mean vec-
tor µ = [µ1, ..., µn]

T and variance-covariance matrix V. Then the weighted
least squares estimator is obtained by minimizing

S = (y − µ)TV−1(y − µ).

1.6.4 Comments on estimation.

1. An important distinction between the methods of maximum likelihood and
least squares is that the method of least squares can be used without mak-
ing assumptions about the distributions of the response variables Yi be-
yond specifying their expected values and possibly their variance-covariance
structure. In contrast, to obtain maximum likelihood estimators we need
to specify the joint probability distribution of the Yi’s.

2. For many situations maximum likelihood and least squares estimators are
identical.

3. Often numerical methods rather than calculus may be needed to obtain
parameter estimates that maximize the likelihood or log-likelihood function
or minimize the sum of squares. The following example illustrates this
approach.

1.6.5 Example: Tropical cyclones

Table 1.2 shows the number of tropical cyclones in Northeastern Australia
for the seasons 1956-7 (season 1) to 1968-9 (season 13), a period of fairly
consistent conditions for the definition and tracking of cyclones (Dobson and
Stewart, 1974).

Table 1.2 Numbers of tropical cyclones in 13 successive seasons.

Season: 1 2 3 4 5 6 7 8 9 10 11 12 13
No. of cyclones 6 5 4 6 6 3 12 7 4 2 6 7 4

Let Yi denote the number of cyclones in season i, where i = 1, . . . , 13. Sup-
pose the Yi’s are independent random variables with the Poisson distribution
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Figure 1.1 Graph showing the location of the maximum likelihood estimate for the
data in Table 1.2 on tropical cyclones.

with parameter θ. From Example 1.6.2 θ̂ = y = 72/13 = 5.538. An alterna-
tive approach would be to find numerically the value of θ that maximizes the
log-likelihood function. The component of the log-likelihood function due to
yi is

li = yi log θ − θ − log yi!.

The log-likelihood function is the sum of these terms

l =
13∑
i=1

li =
13∑
i=1

(yi log θ − θ − log yi!) .

Only the first two terms in the brackets involve θ and so are relevant to the
optimization calculation, because the term

∑13
1 log yi! is a constant. To plot

the log-likelihood function (without the constant term) against θ, for various
values of θ, calculate (yi log θ − θ) for each yi and add the results to obtain
l∗ =

∑
(yi log θ − θ). Figure 1.1 shows l∗ plotted against θ.

Clearly the maximum value is between θ = 5 and θ = 6. This can provide
a starting point for an iterative procedure for obtaining θ̂. The results of
a simple bisection calculation are shown in Table 1.3. The function l∗ is
first calculated for approximations θ(1) = 5 and θ(2) = 6. Then subsequent
approximations θ(k) for k = 3, 4, ... are the average values of the two previous
estimates of θ with the largest values of l∗(for example, θ(6) = 1

2 (θ(5) + θ(3))).
After 7 steps this process gives θ̂ 
 5.54 which is correct to 2 decimal places.

1.7 Exercises

1.1 Let Y1 and Y2 be independent random variables with

Y1 ∼ N(1, 3) and Y2 ∼ N(2, 5). If W1 = Y1 + 2Y2 and W2 = 4Y1 − Y2 what
is the joint distribution of W1 and W2?

1.2 Let Y1 and Y2 be independent random variables with

Y1 ∼ N(0, 1) and Y2 ∼ N(3, 4).
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Table 1.3 Successive approximations to the maximum likelihood estimate of the mean
number of cyclones per season.

k θ(k) l∗

1 5 50.878
2 6 51.007
3 5.5 51.242
4 5.75 51.192
5 5.625 51.235
6 5.5625 51.243
7 5.5313 51.24354
8 5.5469 51.24352
9 5.5391 51.24360
10 5.5352 51.24359

(a) What is the distribution of Y 2
1 ?

(b) If y =
[

Y1

(Y2 − 3)/2

]
, obtain an expression for yTy . What is its dis-

tribution?

(c) If y =
(
Y1

Y2

)
and its distribution is y ∼ N(µ,V), obtain an expression

for yTV−1y. What is its distribution?

1.3 Let the joint distribution of Y1 and Y2 be N(µ,V) with

µ =
(

2
3

)
and V =

(
4 1
1 9

)
.

(a) Obtain an expression for (y − µ)TV−1(y − µ).What is its distribution?
(b) Obtain an expression for yTV−1y. What is its distribution?

1.4 Let Y1, ..., Yn be independent random variables each with the distribution
N(µ, σ2). Let

Y =
1
n

n∑
i=1

Yi and S2 =
1

n− 1

n∑
i=1

(Yi − Y )2.

(a) What is the distribution of Y ?

(b) Show that S2 =
1

n− 1
[∑n
i=1(Yi − µ)2 − n(Y − µ)2

]
.

(c) From (b) it follows that
∑

(Yi−µ)2/σ2 = (n−1)S2/σ2+
[
(Y − µ)2n/σ2

]
.

How does this allow you to deduce that Y and S2 are independent?
(d) What is the distribution of (n− 1)S2/σ2?

(e) What is the distribution of
Y − µ
S/

√
n

?
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Table 1.4 Progeny of light brown apple moths.

Progeny Females Males
group

1 18 11
2 31 22
3 34 27
4 33 29
5 27 24
6 33 29
7 28 25
8 23 26
9 33 38
10 12 14
11 19 23
12 25 31
13 14 20
14 4 6
15 22 34
16 7 12

1.5 This exercise is a continuation of the example in Section 1.6.2 in which
Y1, ..., Yn are independent Poisson random variables with the parameter θ.

(a) Show that E(Yi) = θ for i = 1, ..., n.
(b) Suppose θ = eβ . Find the maximum likelihood estimator of β.

(c) Minimize S =
∑(

Yi − eβ
)2 to obtain a least squares estimator of β.

1.6 The data below are the numbers of females and males in the progeny of
16 female light brown apple moths in Muswellbrook, New South Wales,
Australia (from Lewis, 1987).

(a) Calculate the proportion of females in each of the 16 groups of progeny.
(b) Let Yi denote the number of females and ni the number of progeny in

each group (i = 1, ..., 16). Suppose the Yi’s are independent random
variables each with the binomial distribution

f(yi; θ) =
(
ni
yi

)
θyi(1 − θ)ni−yi .

Find the maximum likelihood estimator of θ using calculus and evaluate
it for these data.

(c) Use a numerical method to estimate θ̂ and compare the answer with the
one from (b).
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