R Reference Card Introductory Statistics

by Anthony Tanbakuchi. Version 0.5
Used Tom Short's R Quick reference as a template.
${ }^{\dagger}$ Requires the Using package.
Install once with: install.packages ("UsingR")
Load with: library (UsingR)

Getting help

help (topic) documentation on topic or function
help. search ("phrase") search more generally for a word or phrase Libraries \& Packages
install.packages("package name") install a library / package. Only need to do once
library (name) load library named name
Input and output
scan (file) read contents of file with space separated values into a vector. read.table (file) reads a file in table format and creates a data frame from it; the default separator $s e p=" "$ is any whitespace; use header=TRUE to read the first line as a header of column names
read.csv(file, header=TRUE) id. but with defaults set for reading comma-delimited files
save (file, ...) saves the specified objects (...) in the XDR platformindependent binary format
load (file) load the datasets written with save
save. image (file) saves all objects
write.table(x,file="", row. names=TRUE, col. names=TRUE, sep=" ") prints x after converting to a data frame; if quote is TRUE, character or factor columns are surrounded by quotes ("); sep is the field separator; aol is the end-of-line separator; na is the string for missing values; use col. names=NA to add a blank column header to get the column headers aligned correctly for spreadsheet input
The file argument should be a quoted string specifying the file name or replace it with file. choose (new=FALSE) to interactively select a file. source (file) read R source from a file made with dump (list=.. file=...). Often used for web material source (url ("http://..."))

Data creation

c ($2,4,3, \ldots$) create vector from comma separated data
data. frame ($\mathrm{x} 1, \mathrm{x} 2, \ldots$) create a data set from comma separated list of vectors. Vectors should be same length.
list (name $1=x 2$, name $2=x 2, \ldots$) create a list data set from name=vector comma separated lists of vectors. Useful for unequal length vectors.
seq (from ,to) generates a sequence of numbers, by= specifies increment; length= specifies desired length
factor (\mathbf{x}, levels=) encodes a vector x as a factor (levels)
Slicing and extracting data
Indexing vectors
$x[n] \quad n^{\text {th }}$ element
$x[x>3] \quad$ all elements greater than 3
$x[x>3 \& x<5] \quad$ all elements between 3 and 5
age [gender $==$ "Male"] all ages for "Male" gender (double equal sign) Accessing variables in data sets (data frames \& lists)
names (D) list all variables in data set D
$D \$ \quad$ access variable x in data set D
attach (D) make all variables in D directly accessible
detach (D) undo attach()

Variable information

ls () list all variables (and other objects)
length (x) number of elements in x
names (D) list names of variables in data set D
Data selection and manipulation
sample (\mathbf{x}, size) resample randomly and without replacement size edements in the vector x, the option replace $=$ TRUE allows to resample with replacement
rev (x) reverses the elements of x
sort (x, decreasing=FALSE) sorts the elements of x in increasing order.
cut (\mathbf{x}, breaks) divides x into intervals (factors); breaks is the number of cut intervals or a vector of cut points
match (\mathbf{x}, y) returns a vector of the same length than x with the elements of x which are in y (NA otherwise)
which ($\mathbf{x}==\mathbf{a}$) returns a vector of the indices of x if the comparison op ration is true (TRUE).
unique (x) if x is a vector or a data frame, returns a similar object but with the duplicate elements suppressed
table (x) returns a table with the numbers of the different values of x (typitaly for integers or factors)
subset (\mathbf{x}, \ldots. .) returns a selection of x with respect to criteria (. . . typically comparisons: $x \$ V 1<10$); if x is a data frame, the option select gives the variables to be kept or dropped using a minus sign

Math
+, -, *, /,
factorial (x), $\sin (x), \cos (x), \tan (x), \operatorname{asin}(x)$, $\operatorname{acos}(x), \operatorname{atan}(x), \operatorname{atan} 2(x, y), \log (x)$, $\log 10(x), \exp (x)$
sum (\mathbf{x}) sum all elements in $\mathrm{x} \times . \sum_{i=1}^{n} x_{i}$
$\operatorname{diff}(\mathbf{x})$ lagged and iterated differences of vector x ,
prod (x) product of all elements in $\mathrm{x} . \prod_{i=1}^{n} x$
round (\mathbf{x}, n) rounds elements of x to n decimals
signif (x, n) rounds elements of x to n significant digits
$\log (x$, base) computes the logarithm of x with base base cumsum (\mathbf{x}) a vector which i th element is the sum from $\mathrm{x}[1]$ to $\mathrm{x}[\mathrm{i}]$ cumprod (\mathbf{x}) id. for the product
cumming (x) id. for the minimum
cummax (x) id. for the maximum
choose (\mathbf{n}, \mathbf{k}) computes the combinations of k items selected from n total items when order is unimportant $=n!/[(n-k)!k!]$
union (x, y), intersect (x, y), \quad setdiff($\mathrm{x}, \mathrm{y})$ setequal (\mathbf{x}, y), is. element (el, set) "set" functions

Excellent health statistics - smokers are less likely to die of age related illnesses.'

Descriptive Statistics: Visual

Univariate quantitative data
table (cut (x,breaks, include.lowest=FALSE)) frequency table. break is the number of classes or a vector of breaks. Set include.lowest=TRUE for inclusive lower bounds
hist (x) histogram of the frequencies of x
stem (\mathbf{x}) stem and leaf plot.
DOTplot (x) ${ }^{\dagger}$ dot plot.
dotchart (\mathbf{x}) if x is a data frame, plots a Cleveland dot plot (stacked plots line-by-line and column-by-column)
plot (\mathbf{x}) plot of the values of x (on the y-axis) ordered on the x-axis
boxplot (x, range=1.5) "box-and-whiskers" plot. Set range $=0$ for traditional form.
boxplot (x1 $\mathbf{x 2}$) make a set of box plots for the quantitative variable x 1 in terms of the categorical variable $\mathbf{x} 2$.
Univariate qualitative data
$t=t a b l e(x)$ frequency table of vector x
barplot (sort (t, decreasing $=$ TRUE)) Pareto chart pie (t) pie chart
Bivariate quantitative data
plot (\mathbf{x}, y) scatter plot of x and y
plot (t, y, type="b") time series plot of t and y. Default for type is "p" so you must set it to "b" to get a line plot with points
Plotting function optional arguments
main=" " main title, must be a variable of mode character
xlab=" ", ylab=" " annotates the axes, must be variables of mode character
type="p" specifies the type of plot, "p": points, "l": lines, "b": points connected by lines.
xlim=, ylim= specifies the lower and upper limits of the axes, for example with xlim=c $(-10,10)$.

Descriptive Statistics: Numerical

summary (\mathbf{x}) gives a smart summary of the data in x . Output depends on x $\max (x)$ maximum of the elements of x
$\min (x)$ minimum of the elements of x
range (x) range of the elements of x
mean (x) mean of the elements of x
median (\mathbf{x}) median of the elements of x
mode* to find the mode use sort (table (x)) to list the frequencies of each value
$\operatorname{var}(\mathbf{x})$ sample variance of x
$\mathbf{s d}(\mathbf{x})$ sample standard deviation of x
quantile (\mathbf{x}, probs=) sample quantiles corresponding to the given probabilities (defaults to $0, .25, .5, .75,1$)
$\operatorname{rank}(x)$ ranks of the elements of x

Distributions

R has many distributions. The base names for the common ones are: norm exp, gamma, pois, weibul, cauchy, beta, t, f, chisq, binom, geom, hyper, logis, lnorm, nbinom, unif, wilcox. Prefix the base name with r for a random number generator, d probability density distribution $f(x)$, p cumulative probability distribution $F(x), \mathrm{q}$ inverse cumulative probability distribution $F^{-1}(a)$ (quantile).

Random number generators

Generates N random numbers.
runif (N, min=0, $\max =1$) uniform rbinom ($\mathrm{N}, \mathrm{n}, \mathrm{p}$) binomial
norm (N, mean=0, $\mathbf{s d = 1 \text {) norma }}$
Probability distributions
Returns $p=P(x)$ given x.
abinom(x, n, p) binomial
Cumulative probability
Returns p in $p=P(x<a)=F(a)$ given x.

Set optional argument lower.tail=TRUE to FALSE for area to the right punif ($x, \min =0, \max =1$) uniform
pbinom (x, n, p) binomial
pnorm (x, mean=0, $s d=1$) norma
pt (\mathbf{x}, df) Student's t
$\mathrm{pf}(\mathrm{x}, \mathrm{df} 1, \mathrm{df} 2)$ the F
pchisq(x, df) the χ^{2}

Inverse cumulative probability

Solves for a given p in $p=P(x<a)=F(a)$
Set optional argument lower.tail=TRUE to FALSE if p refers to area to the right, otherwise p must refer to area to the left of a.
qunif ($p, \min =0$, $\max =1$) uniform
qbinom($\mathrm{p}, \mathrm{n}, \mathrm{p}$) binomial
qnorm (p, mean=0, $s d=1$) norma
qt (p , df) Student's t
$\mathrm{qf}(\mathrm{p}, \mathrm{df} 1, \mathrm{df} 2)$ the F
qchisq($p, d f$) the χ^{2}

Hypothesis tests

All tests have the optional arguments with defaults:
alternative="two.sided" alternatively use "less" or "greater"
conf. level $=0.95$ sets confidence level for reported confidence interval, it has no effect on the p-value.
One sample
binom.test ($\mathbf{x}, \mathrm{n}, \mathrm{p}$) proportion test for x successes in n trials with $\mathrm{p}=p_{0}$ null hypothesis of success. Exact test using binomial distribution.
prop.test ($\mathbf{x}, \mathbf{n}, \mathbf{p}$) proportion test for x successes in n trials with $\mathrm{p}=p_{0}$ null hypothesis of success. Uses normal approximation to the binomial. $\left(z=\sqrt{\chi^{2}}\right)$
t.test ($\mathbf{x}, \mathrm{mu}=0$) t test with null hypothesis $\mathrm{mu}=\mu_{0}$.

Two sample
prop.test (x, n) proportion test for $x=C(x 1, x 2)$ successes in $\mathrm{n}=\mathrm{c}(\mathrm{n} 1, \mathrm{n} 2)$ trials with null hypothesis that $p_{1}=p_{2}$. Uses normal approximation to the binomial. $\left(z=\sqrt{\chi^{2}}\right)$
t.test ($\mathbf{x} 1, \mathbf{x} 2$) t test with null hypothesis $\mu_{1}=\mu_{2}$ for sample vectors x 1 and $\times 2$.
Testing normality
qqnorm(x); qqline (x) plot normal quantiles with normal line
wilcox.test (\mathbf{x}) Test data in x against null hypothesis that x is from normal population
Correlation
$\operatorname{cor}(\mathbf{x}, \mathbf{y})$ Linear correlation coefficient for vectors x and
cor.test (\mathbf{x}, y) Test significance of linear correlation
Regression
results $=\operatorname{lm}(\mathbf{y} \sim \mathbf{x})$ Linear regression of y on x vectors results View the results
plot (x, y) ; abline (results) Plot regression line on data predict (results, newdata=data.frame (x=5),
int="pred") Predict y when $x=5$ and show the 95% prediction interval.

Contingency Tables

D=data. frame (c1, c2, c3, ...) Creates a table of data from vectors of column data $\mathrm{c} 1, \mathrm{c} 2, \mathrm{c} 3$,
chisq.test (D) Test homogeneity or independence for contingency table D
ANOVA: one way
data=list ($\mathbf{x} 1=\mathbf{x} 1, \quad \mathbf{x} 2=x 2, \ldots$) Create data set of treatment levels datastack=stack (data) Make a data stack
results=aov(values~ind, data=datastack) Run ANOVA
summary (results) Summarize results

