R Reference Card Introductory Statistics

by Anthony Tanbakuchi. Version 0.5

Used Tom Short's R Quick reference as a template.

†Requires the UsingR package.

Install once with: install.packages("UsingR")

Load with: library (UsingR)

Getting help

help(topic) documentation on topic or function

help.search("phrase") search more generally for a word or phrase

Libraries & Packages

install.packages("package name") install a library / package.
Only need to do once

library (name) load library named name

Input and output

scan(file) read contents of file with space separated values into a vector.
read.table(file) reads a file in table format and creates a data
frame from it; the default separator sep="" is any whitespace; use
header=TRUE to read the first line as a header of column names

read.csv(file,header=TRUE) id. but with defaults set for reading comma-delimited files

save(file,...) saves the specified objects (...) in the XDR platformindependent binary format

load (file) load the datasets written with save

save.image(file) saves all objects

write.table(x, file="", row.names=TRUE, col.names=TRUE,
 sep=" ") prints x after converting to a data frame; if quote is TRUE,
 character or factor columns are surrounded by quotes ("); sep is the
 field separator; eol is the end-of-line separator; na is the string for
 missing values; use col.names=NA to add a blank column header to
 get the column headers aligned correctly for spreadsheet input

The file argument should be a quoted string specifying the file name or replace it with file.choose (new=FALSE) to interactively select a file.

source(file) read R source from a file made with dump(list=...,
file=...). Often used for web material source(url("http://..."))

Data creation

c(2,4,3,...) create vector from comma separated data

data.frame (x1, x2,...) create a data set from comma separated list of vectors. Vectors should be same length.

list(name1=x2, name2=x2,...) create a list data set from name=vector comma separated lists of vectors. Useful for unequal length vectors.

seq(from, to) generates a sequence of numbers, by= specifies increment; length= specifies desired length

factor (x, levels=) encodes a vector x as a factor (levels)

Slicing and extracting data

Indexing vectors

x[n] n^{th} element

x[x > 3] all elements greater than 3

x[x > 3 & x < 5] all elements between 3 and 5

age[gender == "Male"] all ages for "Male" gender (double equal sign)

Accessing variables in data sets (data frames & lists)

names (D) list all variables in data set D D\$x access variable x in data set D

attach (D) make all variables in D directly accessible

detach(D) undo attach()

Variable information

1s () list all variables (and other objects)

length (x) number of elements in x

names (D) list names of variables in data set D.

Data selection and manipulation

sample (x, size) resample randomly and without replacement size elements in the vector x, the option replace = TRUE allows to resample
with replacement

rev(x) reverses the elements of x

 \mathtt{sort} (x, $\mathtt{decreasing=FALSE}$) sorts the elements of x in increasing order

cut (x, breaks) divides x into intervals (factors); breaks is the number of cut intervals or a vector of cut points

match (x, y) returns a vector of the same length than x with the elements of x which are in y (NA otherwise)

which (x == a) returns a vector of the indices of x if the comparison operation is true (TRUE).

 $\label{eq:unique} \textbf{unique}\,(\textbf{x}) \ \text{if } x \ \text{is a vector or a data frame, returns a similar object but with} \\ \text{the duplicate elements suppressed}$

table (x) returns a table with the numbers of the different values of x (typically for integers or factors)

subset (x, ...) returns a selection of x with respect to criteria (..., typically comparisons: x\$V1 < 10); if x is a data frame, the option select gives the variables to be kept or dropped using a minus sign

Math

+, -, *, /, ^
factorial(x), sin(x), cos(x), tan(x), asin(x),

accos(x), atan(x), cos(x), tan(x), asin(x), accos(x), atan(x), atan2(x,y), log(x), log10(x), exp(x)

sum (x) sum all elements in x x. $\sum_{i=1}^{n} x_i$

diff(x) lagged and iterated differences of vector x,

prod (x) product of all elements in x. $\prod_{i=1}^{n} x$

round (x, n) rounds elements of x to n decimals

signif(x, n) rounds elements of x to n significant digits

log(x, base) computes the logarithm of x with base base

cumsum (x) a vector which *i*th element is the sum from x[1] to x[i]

cumprod(x) id. for the product

cummin (x) id. for the minimum

cummax (x) id. for the maximum

choose (n, k) computes the combinations of k items selected from n total items when order is unimportant = n!/[(n-k)!k!]

 $\begin{array}{ll} \text{union}\,(x,y)\,, & \text{intersect}\,(x,y)\,, & \text{setdiff}\,(x,y)\,, \\ & \text{setequal}\,(x,y)\,, \text{is.element}\,(\text{el},\text{set}) \,\,\text{``set''}\,\,\text{functions} \end{array}$

Excellent health statistics - smokers are less likely to die of age related illnesses.'

Descriptive Statistics: Visual

Univariate quantitative data

table(cut(x,breaks, include.lowest=FALSE)) frequency table. break is the number of classes or a vector of breaks. Set include.lowest=TRUE for inclusive lower bounds.

hist (x) histogram of the frequencies of x

stem (x) stem and leaf plot.

DOTplot (x) †dot plot.

dotchart (x) if x is a data frame, plots a Cleveland dot plot (stacked plots line-by-line and column-by-column)

plot (x) plot of the values of x (on the y-axis) ordered on the x-axis

boxplot(x, range=1.5) "box-and-whiskers" plot. Set range=0 for traditional form.

boxplot (x1 x2) make a set of box plots for the quantitative variable x1 in terms of the categorical variable **x2**.

Univariate qualitative data

t=table(x) frequency table of vector x

barplot(sort(t, decreasing = TRUE)) Pareto chart
pie(t) pie chart

Bivariate quantitative data

plot(x, y) scatter plot of x and y

plot (t, y, type="b") time series plot of t and y. Default for type is
"p" so you must set it to "b" to get a line plot with points.

Plotting function optional arguments

main=" " main title, must be a variable of mode character

type="p" specifies the type of plot, "p": points, "l": lines, "b": points connected by lines.

xlim=, **ylim=** specifies the lower and upper limits of the axes, for example with xlim=c (-10, 10).

Descriptive Statistics: Numerical

summary (x) gives a smart summary of the data in x. Output depends on x

max (x) maximum of the elements of x

min (x) minimum of the elements of x

range (x) range of the elements of x

mean (x) mean of the elements of x

median (x) median of the elements of x

 ${\tt mode} \star {\tt to}$ find the mode use ${\tt sort}$ (table(x)) to list the frequencies of each value

var (x) sample variance of x

sd(x) sample standard deviation of x

quantile (x, probs=) sample quantiles corresponding to the given probabilities (defaults to 0.25..5..75.1)

rank (x) ranks of the elements of x

Distributions

R has many distributions. The base names for the common ones are: norm, exp, gamma, pois, weibul, cauchy, beta, t, f, chisq, binom, geom, hyper, logis, lnorm, nbinom, unif, wilcox. Prefix the base name with r for a random number generator, d probability density distribution f(x), p cumulative probability distribution F(x), q inverse cumulative probability distribution $F^{-1}(a)$ (quantile).

Random number generators

Generates N random numbers.

runif(N, min=0, max=1) uniform
rbinom(N, n, p) binomial
rnorm(N, mean=0, sd=1) normal

Probability distributions

Returns p = P(x) given x.

dbinom(x, n, p) binomial

Cumulative probability

Returns p in p = P(x < a) = F(a) given x.

Set optional argument lower.tail=TRUE to FALSE for area to the right.

punif(x, min=0, max=1) uniform

pbinom(x, n, p) binomial

pnorm(x, mean=0, sd=1) normal

pt (x, df) Student's t

pf(x, df1, df2) the F

pchisq(x, df) the χ^2

Inverse cumulative probability

Solves for a given p in p = P(x < a) = F(a)

Set optional argument lower, tail=TRUE to FALSE if p refers to area to the right, otherwise p must refer to area to the left of a.

qunif(p, min=0, max=1) uniform

qbinom(p, n, p) binomial

qnorm(p, mean=0, sd=1) normal

qt (p, df) Student's t

qf(p, df1, df2) the F

qchisq(p, df) the χ^2

Hypothesis tests

All tests have the optional arguments with defaults:

alternative="two.sided" alternatively use "less" or "greater"

conf.level=0.95 sets confidence level for reported confidence interval, it has no effect on the p-value.

One sample

binom.test(x, n, p) proportion test for x successes in n trials with p=p₀ null hypothesis of success. Exact test using binomial distribution.

prop.test (x, n, p) proportion test for x successes in n trials with $p=p_0$ null hypothesis of success. Uses normal approximation to the binomial. $(z=\sqrt{\chi^2})$

t.test(x, mu=0) t test with null hypothesis mu= μ_0 .

Two sample

prop.test(x, n) proportion test for x=c(x1, x2) successes in n=c(n1, n2) trials with null hypothesis that $p_1=p_2$. Uses normal approximation to the binomial. $(z=\sqrt{\chi^2})$

t.test (x1, x2) t test with null hypothesis $\mu_1 = \mu_2$ for sample vectors x1 and x2.

Testing normality

qqnorm(x); qqline(x) plot normal quantiles with normal line
wilcox.test(x) Test data in x against null hypothesis that x is from normal population

Correlation

 $\mathtt{cor}(\mathbf{x}, \ \mathbf{y})$ Linear correlation coefficient for vectors x and y $\mathtt{cor.test}(\mathbf{x}, \ \mathbf{y})$ Test significance of linear correlation

Regression

results=lm(y~x) Linear regression of y on x vectors results View the results

plot(x, y); abline(results) Plot regression line on data
predict(results, newdata=data.frame(x=5),

int="pred") Predict y when x=5 and show the 95% prediction interval.

Contingency Tables

D=data.frame (c1, c2, c3, ...) Creates a table of data from vectors of column data c1, c2, c3, ...

 $\begin{tabular}{ll} \textbf{chisq.test (D)} & Test homogeneity or independence for contingency table \\ & D \end{tabular}$

ANOVA: one way

data=list(x1=x1, x2=x2, ...) Create data set of treatment levels datastack=stack(data) Make a data stack

results=aov(values~ind, data=datastack) Run ANOVA summary(results) Summarize results